Example: From the Heart SCORE Study, compare the prevalence of diabetes by level of weekly exercise.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>No diabetes</th>
<th>Diabetes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 times/wk</td>
<td>177</td>
<td>18</td>
<td>195</td>
</tr>
<tr>
<td>> 3 times/wk</td>
<td>278</td>
<td>23</td>
<td>301</td>
</tr>
</tbody>
</table>

\[p_1 = \text{__________} \]

\[p_2 = \text{__________} \]

\[(\text{RD}) (p_1 - p_2 = \text{______}); \quad \text{Risk Ratio (RR)} (p_1 / p_2 = \text{______})\]

1) Set up the hypothesis and determine the level of statistical significance (including 1 versus 2-sided hypothesis).

\[H_0: \quad \text{______________________________} \]

\[H_1: \quad \text{______________________________} \]

\[\alpha = 0.05 \]
Example: From the Heart SCORE Study, compare the prevalence of diabetes by level of weekly exercise.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>No diabetes</th>
<th>Diabetes</th>
<th>Total</th>
<th>p_1</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 times/wk</td>
<td>177</td>
<td>18</td>
<td>195</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>≥3 times/wk</td>
<td>278</td>
<td>23</td>
<td>301</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

2) Select the appropriate test statistic:

\[
\min[n_1p_1, n_1(1 - p_1)] \geq 5 \\
\min[n_2p_2, n_2(1 - p_2)] \geq 5
\]

\[
z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}
\]

Use “z” instead of “t”

3) Set up the decision rule:

Reject H_0 if: _____________________________
Example: From the Heart SCORE Study, compare the prevalence of diabetes by level of weekly exercise.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>No diabetes</th>
<th>Diabetes</th>
<th>Total</th>
<th>p_1</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 times/wk</td>
<td>177</td>
<td>18</td>
<td>195</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>>3 times/wk</td>
<td>278</td>
<td>23</td>
<td>301</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

4) Compute the test statistic:

\[
\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} \quad \hat{p} = \text{_________} = \text{_________}
\]

\[
z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}} \quad z = \text{_________________________}
\]

5) Conclusion: ________________________________